Dongdaemun
SEOUL | KOREA
APRIL 18-21, 2017
News
Sponsors
Previous Events
Channels

In Situ Magnetic Flux Vortex Visualization in Time-Dependent Ginzburg-Landau Superconductor Simulations

  • Hanqi Guo
    Argonne National Laboratory
  • Tom Peterka
    Argonne National Laboratory
  • Andreas Glatz
    Argonne National Laboratory

Abstract

We present an in situ visualization framework to capture comprehensive details of vortex dynamics in superconductor simulations. Vortices, which determine all electromagnetic properties of type-II superconductors, are extracted and tracked at the same time with GPU-based time-dependent Ginzburg-Landau superconductor simulations. The in situ workflow involves three parts: 1) a tightly-coupled GPU-accelerated algorithm that detects primitives for ambiguity-free vortex tracking, 2) a loosely-coupled task-parallel feature-tracking method, and 3) a web-based remote visualization tool for vortex dynamics analysis. Our design minimizes the data movement and storage, maximizes the resource utilization, and reduces the slowdown of the simulation. Our solution captures all vortex dynamics in the simulation, previously impossible with traditional post hoc methods. We also demonstrate in situ visualization cases that help scientists understand how vortices cut each other and recombine into new vortices, which are directly related to energy dissipation of superconducting materials.